As Pereira said "Only the Johson and the Radzimovsky models are
suitable to describe the contact involving colliding cylinders in most
of practical applications."
% initial value for fit n = 10/9; k0 = 1e10; n0 = 1; % fitfun1(): k is unknown fitfun1 = @(k,delta) k.*delta.^n; % n = 9/10 % fitfun2(): k and n are unknown fitfun2 = @(para,delta) para(1).*delta.^para(2); % para is established for nlinfit()
% fit for Radzimovasky model % fitfun1 [kRadzi1, ~,~,~,MSERadzi1,~] = nlinfit(deltaRadzi, F, fitfun1, k0); % fitfun2 [fitParaResult, ~,~,~,MSERadzi2,~] = nlinfit(deltaRadzi, F, fitfun2, [k0, n0]); kRadzi2 = fitParaResult(1); nRadzi2 = fitParaResult(2); % plot for Radzimovasky model plot(deltaRadzi,F,... "LineWidth",2); hold on plot(deltaRadzi,fitfun1(kRadzi1,deltaRadzi),... 'o',... 'MarkerIndices', 1:num/20:num); hold on plot(deltaRadzi,fitfun2([kRadzi2,nRadzi2],deltaRadzi),... 's',... 'MarkerIndices', 1:num/20:num); hold off xlabel('$\delta$ (m)','Interpreter',"latex") ylabel('$F$ (N)','Interpreter',"latex") title('Line Contact - Fit Model - Radzimovasky') legend( 'Radzimovasky model',... '$F = k_{Hertz} \delta^{10/9}$',... '$F = k_{Hertz} \delta^n$',... 'Interpreter',"latex",... "Location","best")
1 2 3 4 5 6 7 8
% print fit result fprintf([' k unknow k and n unknow\n' ... 'n %6.6f %6.6f\n'... 'KHertz %6.2e %6.2e\n'... 'MSE %6.2e %6.2e'],... n, nRadzi2,... kRadzi1, kRadzi2,... MSERadzi1, MSERadzi2);
% fit for Johnson model % fitfun1 [kJohnson1, ~,~,~,MSEJohnson1,~] = nlinfit(deltaJohnson, F, fitfun1, k0); % fitfun2 [fitParaResult, ~,~,~,MSEJohnson2,~] = nlinfit(deltaJohnson, F, fitfun2, [k0, n0]); kJohnson2 = fitParaResult(1); nJohnson2 = fitParaResult(2); % plot for Radzimovasky model plot(deltaJohnson,F,... "LineWidth",2); hold on plot(deltaJohnson,fitfun1(kJohnson1,deltaJohnson),... 'o',... 'MarkerIndices', 1:num/20:num); hold on plot(deltaJohnson,fitfun2([kJohnson2,nJohnson2],deltaJohnson),... 's',... 'MarkerIndices', 1:num/20:num); hold off xlabel('$\delta$ (m)','Interpreter',"latex") ylabel('$F$ (N)','Interpreter',"latex") title('Line Contact - Fit Model - Johnson') legend( 'Johnson model',... '$F = k_{Hertz} \delta^{10/9}$',... '$F = k_{Hertz} \delta^n$',... 'Interpreter',"latex",... "Location","best")
1 2 3 4 5 6 7 8
% print fit result fprintf([' k unknow k and n unknow\n' ... 'n %6.6f %6.6f\n'... 'KHertz %6.2e %6.2e\n'... 'MSE %6.2e %6.2e'],... n, nJohnson2,... kJohnson1, kJohnson2,... MSEJohnson1, MSEJohnson2);
Output:
k unknow
k and n unknow
n
1.111111
1.160895
KHertz
3.94e+09
5.80e+09
MSE
7.10e+07
1.72e+06
Reference
Hale, Layton C. Appendix C: Contact Mechanics, in "Principles and
techniques for desiging precision machines." MIT PhD Thesis, 1999. pp.
417-426.
K. L. Johnson, “Non-Hertzian normal contact of elastic bodies,” in
Contact Mechanics, Cambridge: Cambridge University Press, 1985, pp.
107–152.
A. C. Fischer-Cripps, "Elastic Contact," In Introduction to Contact
Mechanics. Mechanical Engineering Series, Boston: Springer, 2007, pp.
101-114.
Cândida M. Pereira, Amílcar L. Ramalho, Jorge A. Ambrósio. A
critical overview of internal and external cylinder contact force
models. Nonlinear Dynamics, 2010, 63 (4), pp.681-697.
Some slids in web:
https://my.mech.utah.edu/~me7960/lectures/Topic2-FundamentalsOfErrors.pdf
Posted onEdited onWord count in article: 1.3kReading time ≈5 mins.
转动惯量
概念
在经典力学中,转动惯量又称惯性矩(英语:moment
of inertia, mass moment of inertia, second moment of mass,
最准确的表达应该是 rotational inertia),通常以 \(I\) 表示,国际单位制为 \(kg \cdot m^2\)。
截面惯性矩又称面积二次轴矩=横截面的惯性矩=面积惯性矩
(英语:second moment of aera, second aera mement, quadratic moment of
aera, aera moment of inertia)
通常是对受弯曲作用物体的横截面而言,是反映截面的形状与尺寸对弯曲变形影响的物理量。弯曲作用下的变形或挠度不仅取决于荷载的大小,还与横截面的几何特性有关。如工字梁的抗弯性能就比相同截面尺寸的矩形梁好。它和反映截面抗扭转作用性能的面积极惯性矩是相似的。
a := x + 3*y subs(x = z, a) #用 z 替换表达式 a 中的 x,结果为 z + 3*y subs(z = x, a) #因等式中无 z,故结果为 x + 3*y;等式左端为表示中已有变量,右端为替换后的变量 subs(x = 2 z,a) #结果为 2*z + 3*y subs(2 y = z,a) #结果为 x + 3*y;因为subs只用来替换单变量不进行表达式的计算,该情况使用 algsubs() algsubs(2*y = z, a) #结果为 x + (3*z)/2
Posted onEdited onWord count in article: 385Reading time ≈1 mins.
参考文献
Timoshenko本人的论文:
Timoshenko S P. LXVI. On the correction for shear of the differential
equation for transverse vibrations of prismatic bars[J]. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
1921, 41(245): 744-746.
Timoshenko梁的有限元模型-必引论文:
Nelson, H. D. A Finite Rotating Shaft Element Using Timoshenko Beam
Theory[J]. Journal of Mechanical Design, 1980, 102(4): 793-803.